r=a(1-sinθ)像

网上有关“r=a(1-sinθ)像”话题很是火热,小编也是针对r=a(1-sinθ)像寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

r=a(1-sinθ)的数学坐标如图。它是半径为a的圆绕着与其半径相等的圆r1=-a·sinθ所形成的轨迹。

心形线,是一个圆上的固定一点在它绕着与其相切且半径相同的另外一个圆周滚动时所形成的轨迹,因其形状像心形而得名。

以a=3为例:

扩展资料:

1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。

小公主的数学在笛卡尔的悉心指导下突飞猛进,笛卡尔向她介绍了自己研究的新领域--直角坐标系。每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。

笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。

国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。

公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是著名的“心形线”。

百度百科-心形线

关于笛卡尔的故事收获

笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,认识了瑞典一个小公回国18岁的公主克里斯汀,答后成为她的数学老师,日日相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,后因女儿求情将其流放回法国,克里斯汀公主也被父亲软禁起来。

笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,大发慈悲就把这封信交给一直闷闷不乐的克里斯汀,公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是著名的“心形线”。

国王死后,克里斯汀登基,立即派人在欧洲四处寻找心上人,无奈斯人已故,先她走一步了,徒留她孤零零在人间...

据说这封享誉世界的另类情书还保存在欧洲笛卡尔的纪念馆里。

你对笛卡尔和公主的爱情故事有什么看法

也许我内心是比较黑暗的,我认为笛卡尔完全是贪图公主的美貌与金钱地位,如果是真的喜欢,他就应该考虑的不要去招惹公主。

I r=a(1-cosθ) You是什么意思

意思是:我爱你,我喜欢你。

r=a(1-cosθ)是心形曲线的极坐标方程。图形如下:

心形曲线的方程形式:

1、极坐标方程

水平方向: ρ=a(1-cosθ) 或 ρ=a(1+cosθ) (a>0)

垂直方向: ρ=a(1-sinθ) 或 ρ=a(1+sinθ) (a>0)

2、直角坐标方程

心形线的平面直角坐标系方程表达式分别为 x^2+y^2+a*x=a*sqrt(x^2+y^2) 和 x^2+y^2-a*x=a*sqrt(x^2+y^2)

3、参数方程

-pi<=t<=pi 或 0<=t<=2*pi

x=a*(2*cos(t)-cos(2*t))

y=a*(2*sin(t)-sin(2*t))

(3)关于笛卡尔爱情故事的个性签名扩展阅读:

《数学的故事》里面说到了数学家笛卡尔的爱情故事。笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,

1649年,斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。几天后,他意外的接到通知,国王聘请他做小公主的数学老师。跟随前来通知的侍卫一起来到皇宫,他见到了在街头偶遇的女孩子。从此,他当上了小公主的数学老师。

每天形影不离的相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,小公主克里斯汀苦苦哀求后,国王将其流放回法国,克里斯汀公主也被父亲软禁起来。

笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,将全城的数学家召集到皇宫,但没有一个人能解开,他不忍心看着心爱的女儿整日闷闷不乐,就把这封信交给一直闷闷不乐的克里斯汀。

公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是著名的“心形线”。

国王死后,克里斯汀登基,立即派人在欧洲四处寻找心上人,无奈斯人已故,先她一步走了,徒留她孤零零在人间...

据说这封享誉世界的另类情书还保存在欧洲笛卡尔的纪念馆里。

笛卡尔与克里斯汀公主的爱情故事(详细点,谢谢)

斯德哥尔摩的街头,52岁的笛卡尔邂逅了18岁的瑞典公主克里斯汀。

那时,落魄、一文不名的笛卡尔过着乞讨的生活,全部的财产只有身上穿得破破烂烂的衣服和随身所带的几本数学书籍。

一个宁静的午后,笛卡尔照例坐在街头。突然,有人来到他旁边,拍了拍他的肩膀:“你在干什么呢?”扭过头,笛卡尔看到一张年轻秀丽的脸庞,一双清澈的眼睛如湛蓝的湖水,楚楚动人。她就是瑞典的小公主。国王最宠爱的女儿克里斯汀。

她蹲下身,拿过笛卡尔的数学书和草稿纸,和他交谈起来。言谈中,他发现,这个小女孩思维敏捷,对数学有着浓厚的兴趣。

几天后,他意外地接到通知,国王聘请他做小公主的数学老师。满心疑惑的笛卡尔跟随前来通知的侍卫一起来到皇宫,在会客厅等候的时候,他看到前几天在街头偶遇的女孩子。从此,他当上了公主的数学老师。

公主的数学在笛卡尔的悉心指导下突飞猛进,他们之间也开始变得亲密起来。每天形影不离也使他们彼此产生了爱慕之心。

然而,没过多久,他们的恋情传到了国王的耳朵里。国王大怒,下令马上将笛卡尔处死。在克里斯汀的苦苦哀求下,国王将他放逐回国,公主被软禁。

笛卡尔回到法国后不久,便染上重病。在生命进入倒计时的那段日子,他日夜思念的还是街头偶遇的那张温暖的笑脸。在笛卡尔给克里斯汀寄出第十三封信后,他永远地离开了这个世界。这最后一封信上没有写一句话,只有一个方程:r=a(1-sin

e)。

国王不忍看着心爱的女儿每天闷闷不乐,便把这封信给了她。拿到信的克里斯汀立即明白了恋人的意图,找来纸和笔,着手把方程图形画了出来,一颗心形图案出现在眼前,克里斯汀不禁流下感动的泪水,这条曲线就是著名的“心形线”。

这封享誉世界的另类隋书,至今还保存在欧洲笛卡尔的纪念馆里。

(4)关于笛卡尔爱情故事的个性签名扩展阅读:

笛卡尔是法国著名的哲学家、物理学家、数学家、神学家,他对现代数学的发展做出了重要的贡献,因将几何坐标体系公式化而被认为是解析几何之父。他与英国哲学家弗兰西斯·培根一同开启了近代西方哲学的“认识论”转向。

笛卡尔是二元论的代表,留下名言“我思故我在”(或译为“思考是唯一确定的存在”),提出了“普遍怀疑”的主张,是欧洲近代哲学的奠基人之一,黑格尔称他为“近代哲学之父”。

他的哲学思想深深影响了之后的几代欧洲人,开拓了所谓“欧陆理性主义”哲学。笛卡尔自成体系,融唯物主义与唯心主义于一体,在哲学史上产生了深远的影响,同时,他又是一位勇于探索的科学家,他所建立的解析几何在数学史上具有划时代的意义。

笛卡尔堪称17世纪的欧洲哲学界和科学界最有影响的巨匠之一,被誉为“近代科学的始祖”。他创立了著名的平面直角坐标系。

求一句经典的爱情哲学个性签名!

1.只是因为在人群中多看了她一眼,从此便止不住思念。

2.你若不离不弃,我定生死相依。

3.爱不需要海枯石烂,也不需要烛光晚餐,需要的是两颗真心爱恋的心。

关于笛卡尔的情书

//360doc/content/10/1017/21/1623434_61850604.s

图不好贴,呵内呵容

你咋看笛卡尔和公主的爱情故事来谈一谈

这个故事不是真的,克里斯汀女王和笛卡尔仅有的交际,就只是请来做了一段时间老师而已。

关于心形线的爱情故事

读《数学的故事》里来面说到了数学家笛自卡尔的爱情故事。笛卡尔于1596年出生在法国,欧洲大陆爆发黑死病时他流浪到瑞典,认识了瑞典一个小公国18岁的公主克里斯汀,后成为她的数学老师,日日相处使他们彼此产生爱慕之心,公主的父亲国王知道了后勃然大怒,下令将笛卡尔处死,后因女儿求情将其流放回法国,克里斯汀公主也被父亲软禁起来。笛卡尔回法国后不久便染上重病,他日日给公主写信,因被国王拦截,克里斯汀一直没收到笛卡尔的信。笛卡尔在给克里斯汀寄出第十三封信后就气绝身亡了,这第十三封信内容只有短短的一个公式:r=a(1-sinθ)。国王看不懂,觉得他们俩之间并不是总是说情话的,大发慈悲就把这封信交给一直闷闷不乐的克里斯汀,公主看到后,立即明了恋人的意图,她马上着手把方程的图形画出来,看到图形,她开心极了,她知道恋人仍然爱着她,原来方程的图形是一颗心的形状。这也就是著名的“心形线”。

国王死后,克里斯汀登基,立即派人在欧洲四处寻找心上人,无奈斯人已故,先她走一步了,徒留她孤零零在人间...

据说这封享誉世界的另类情书还保存在欧洲笛卡尔的纪念馆里。

关于笛卡尔的第十三封情书

第十三封情书

笛卡儿,17世纪时出生于法国,他对于后人的贡献相当大, 他是第一个创造发明坐标的人,可惜一生穷困潦倒。 一直到52岁,仍然默默无名。

当时法国正流行黑死病,笛卡儿不得不逃离法国, 于是他流浪到瑞典当乞丐。 某天,他在市场乞讨时,有一群少女经过, 其中一名少女发现他的口音不像是瑞典人, 她对笛卡儿非常好奇,于是上前问他…… 你从哪来的啊? “法国”“你是做什么的啊?” “我是数学家。” 这名少女叫克丽丝汀,18岁,是一个公主, 她和其它女孩子不一样,并不喜欢文学,而是热衷于数学。 当她听到笛卡儿说名身份之后,感到相当大的兴趣,于是把笛卡儿邀请回宫。 笛卡儿就成了她的数学老师,将一生的研究倾囊相授给克丽丝汀。 而克丽丝汀的数学也日益进步,直角坐标当时也只有笛卡儿这对师生才懂。 后来,他们之间有了不一样的情愫,发生了喧腾一时的师生恋。 这件事传到国王耳中,让国王相当愤怒! 下令将笛卡儿处死,克丽丝汀以自缢相逼, 国王害怕宝贝女儿真的会想不开, 于是将笛卡儿放逐回法国,并将克丽丝汀软禁。 笛卡儿一回到法国后,没多久就染上了黑死病,躺在床上奄奄一息。 笛卡儿不断地写信到瑞典给克丽丝汀,但却被国王给拦截没收。 所以克丽丝汀一直没收到笛卡儿的信…… 在笛卡儿快要死去的时候,他寄出了第13封信, 当他寄出去没多久后...就气绝身亡了。 这封信的内容只有短短的一行……

r=a(1-sinθ)

国王拦截到这封信之后,拆开看,发现并不是一如往常的情话。 国王当然看不懂这个数学式,于是找来城里所有科学家来研究, 但都没有人能够解开到底是什么意思。 国王心想……反正笛卡儿快要死了, 而且公主被软禁时郁闷不乐的,所以,就把信交给克丽丝汀。 当克丽丝汀收到这封信时,雀跃无比, 她很高兴她的爱人还是在想念她的。她立刻动手研究这行字的秘密。 没多久就解出来了,用的就是直角坐标图(注:实际上是极坐标系)

当θ=0°时,r=a(1-0)=a ……A点

当θ=90°时,r=a(1-1)=0 ……B点

当θ=180°时,r=a(1-0)=a ……C点

当θ=270°时,r=a(1+1)=2a……D点 a为四截距的比值

将整个曲线图作出来,就是有名的心形线!

不久之后那位国王也死了,克丽丝汀

继承王位, 登基之后马上

派人在欧洲四处寻找

笛卡儿的踪迹,

可惜……人已故,

才子和佳人没

能有童话般

的结局。

传说,

这第13封的

另类情书还保留

在欧洲的笛卡儿

纪念馆里……

信里的这个式子,

这就是笛卡尔和克丽

丝汀之间的“爱情密码”。

极坐标

在 平面内取一个定点O, 叫极点,引一条射线Ox,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。对于平面内任何一点M,用ρ表示线段OM的长度,θ表示从Ox到OM的角度,ρ叫做点M的极径,θ叫做点M的极角,有序数对 (ρ,θ)就叫点M的极坐标,这样建立的坐标系叫做极坐标系。

在极坐标中,x被ρcosθ代替,y被ρsinθ代替。ρ=(x^2+y^2)^0.5

我思故我在

笛卡尔的哲学命题(法:Je pense, donc je suis. 拉丁:Cogito ergo sum 英:I think ,therefore I am.),直译为“我思考,所以我存在”

意思是:“当我怀疑一切事物的存在时,我却不用怀疑我本身的思想,因为此时我唯一可以确定的事就是我自己思想的存在”。比较权威的解释是:“我无法否认自己的存在,因为当我否认、怀疑时,我就已经存在!”所以,否认自己的存在是自相矛盾的。而否认和怀疑是一种思考活动,所以他说,我思故我在。并非是平时所说的“我思考,故我存在!”*

至高的形而上

在时间的拐弯处

你的影子 无处不在

穿越过世纪的尘埃

因为一种思想 你的光芒一路照耀

在人类精神的花园

你是一片长青的叶子

“I think therefore I am”

来自哲学的呓语 谁的声音如梭

在每一个交叉的路口

智者如此说

关于“r=a(1-sinθ)像”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

本文来自作者[景胜楠]投稿,不代表乐毅号立场,如若转载,请注明出处:https://leheathy.com/zhishi/202507-343.html

(10)
景胜楠的头像景胜楠签约作者

文章推荐

发表回复

作者才能评论

评论列表(3条)

  • 景胜楠的头像
    景胜楠 2025年07月29日

    我是乐毅号的签约作者“景胜楠”

  • 景胜楠
    景胜楠 2025年07月29日

    本文概览:网上有关“r=a(1-sinθ)像”话题很是火热,小编也是针对r=a(1-sinθ)像寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。r...

  • 景胜楠
    用户072911 2025年07月29日

    文章不错《r=a(1-sinθ)像》内容很有帮助